Recueil des Méthodes d’analyse des vins et moûts

Download document

Total Sulfur dioxide (titrimetry) (Type-II)

OIV-MA-AS323-04A2 Total sulphur dioxide

Type II method

 

  1. Scope

This method is for the determination of total sulphur dioxide in wine and must.

  1. Definitions

Total sulphur dioxide is defined as the sum of all of the different forms of sulphur dioxide present in the wine in free form or bound to the wine’s constituents.

  1. Principle

Sulphur dioxide is aspirated by a current of air or nitrogen, and is captured and oxidised by bubbling through a dilute and neutral solution of hydrogen peroxide. The sulphuric acid formed is determined by titration with a standard solution of sodium hydroxide.

The total sulphur dioxide is extracted from the wine by aspiration at high temperature (around 100 °C).

  1. Reagents and products
    1.   Pure phosphoric acid at 85% (ρ20 = 1.71 g/mL) (CAS no. 7664-38-2)
    2.   Indicator reagent:

Methyl red (CAS no. 493-52-7) 100 mg (1 mg)

Methylene blue (CAS no. 7220-79-3): 50 mg (0.5 mg)

Ethanol (≥ 95%) (CAS no. 64-17-5): 50 mL

Make up to 100 mL with water for analytical use. Respect the proportions for the volumes that differ from 100 mL.

Commercial indicator reagents with the same composition may be used.

4.3.  1 M Sodium hydroxide (3.84%) or in anhydrous form (pellets) (CAS no. 1310-73-2)

4.4.  0.01 M Sodium hydroxide solution:

By way of example: Dilute 10.0 mL of 1 M sodium hydroxide (4.4) in 1 L of water for analytical use.

If necessary, check the titre of the solution regularly (correction factor to be applied) and keep it away from atmospheric CO2.

4.5.  Hydrogen peroxide solution in 3 volumes (= 9.1 g/L = 0.27 mol/L H2O2), prepared or commercial (e.g. 30% : mixture with CAS no. 7722-84-1)

Note: A solution of 30% by mass corresponds to a titre of 110 volumes (ρ20 1,11 g/mL), implying the volume of oxygen ideally released per litre of under standard conditions of temperature and pressure, while a solution of 3% by mass (ρ20 1 g/mL) corresponds to a titre of 10 volumes (0.89 mol/L). The preparation thus depends on the commercial solution used, considering that in any case the volume used in the method will be in excess.

  1. Apparatus

The apparatus to be used should conform to the diagram below, especially with regard to the condenser.

The gas supply tube to bubbler B ends in a small sphere of 1 cm in diameter with 20 holes of 0.2 mm in diameter around its largest horizontal circumference. Alternatively, this tube may end in a sintered glass plate that produces a large number of very small bubbles and thus ensures good contact between the liquid and gaseous phases.

The gas flow through the apparatus should be approximately 40 L/h. The bottle situated on the right of the apparatus is intended to restrict the pressure reduction produced by the water pump to 20-30 cm water. In order to regulate the pressure reduction to achieve the proper flow rate, it is preferable to install a flow meter with a semi-capillary tube between the bubbler and the bottle. For the determination of total sulphur dioxide, using a burner (with a 4-5 cm high flame or infrared) allowing for boiling point to be reached very quickly is preferable. Do not place a wire gauze under flask A, but rather a deflector with a 2-4 cm orifice. The pyrogenation of non-volatile matter in the wine on the flask walls is thus avoided.

Use a 250-mL flask for a 50 mL sample and a 100-150 mL flask for a 20 mL sample.

Figure 1 : The dimensions are indicated in millimetres. The internal diameters of the 4 concentric tubes that make up the condenser are 45, 34, 27 and 10 mm

  1. Procedure

Air- or nitrogen-rinsing the apparatus before each new determination (e.g. for 5 minutes) is recommended. If a blank test is carried out, the colour of the indicator in the neutralised hydrogen peroxide solution at the exit of the gas-supply tube should not change.

Connect the water from the condenser.

In bubbler B of the entrainment apparatus, introduce 2-3 mL hydrogen peroxide solution (4.5) and 2 drops of indicator reagent (4.2), and neutralise with the 0.01 M sodium hydroxide solution (4.4); a neutral pH = green colour.

Note: For large sample series, it is also possible to prepare an already neutralised solution before introducing it into the flask. Adapt the concentrations and volumes accordingly, bearing in mind that the oxidative power of the solution must be maintained (reduced shelf life).

Adapt this bubbler to the apparatus.

Transfer 50 mL of sample to flask A if the presumed total SO2 content in the sample is <50 mg/L, and 20 mL of sample if the presumed total SO2 content is ≥ 50 mg/L and attach it to the apparatus.

Introduce 15 mL of phosphoric acid (4.1) into bulb C if the presumed total SO2 content of the sample is <50 mg/L and 5 mL phosphoric acid (4.1) if the presumed total SO2 content of the sample is  50 mg/L.

Open the tap to add the acid to the sample and activate the heat source, while simultaneously starting the gas flow and setting the timer to 15 minutes. Maintain at boiling point for the duration of the gas flow. The entrained total sulphur dioxide is oxidised into sulphuric acid.

After 15 minutes, turn off the heat source, take bubbler B out, and rinse the gas supply tube (via the socket) with water.

Titrate the acid formed by the 0.01 M sodium hydroxide solution (4.4) up to the green bend.

The number of millilitres used is expressed by n.

  1. Calculations and expression of results

The total sulphur dioxide is expressed in milligrams per litre (mg/L), in whole numbers.

Calculations:

Samples low in sulphur dioxide (50 mL sampling):  6.4 n

Other samples (20 mL sampling): 16 n

 

  1. Precision

8.1.  Repeatability (r)

Content < 50 mg/L (50 mL sampling), r = 1 mg/L

Content  50 mg/L (20 mL sampling), r = 6 mg/L

8.2.  Reproducibility (R)

Content < 50 mg/L (50 mL sampling), R = 9 mg/L

Content  50 mg/L (20 mL sampling), R = 15 mg/L

 

  1. Bibliography
  • Paul, F., Mitt. Klosterneuburg, Rebe u. Wein, 1958, ser. A, 821.

Collaborative study

  1. Scope of application

An international collaborative study, in accordance with Resolution OIV-OENO 6-2000, for the validation of updates to the methods for the determination of free sulphur dioxide and total sulphur dioxide (OIV-MA-AS323-04A), based on the decision of the OIV “Methods of Analysis” Sub-Commission, April 2018.

  1. Standard references
  • Update (draft) to the OIV-MA-AS323-04A methods,
  • ISO 5725,
  • Resolution OIV-OENO 6-2000.
  1. Protocol

A total of 20 samples were prepared using homogeneous volumes of 10 wines from various wine regions in France and Portugal. Each sample was made up twice (the second as a blind duplicate), according to the double-blind principle.

The samples were prepared between 18 and 20 June 2018, then shipped without delay to the participating laboratories.

Sample no.

Blind duplicate no.

Nature of sample

A

1-14

Dry white wine

B

2-16

Dry white wine

C

3-19

Dry rosé wine

D

4-12

Dry rosé wine

E

5-20

Dry red wine

F

6-18

Dry red wine

G

7-11

Dry red wine

H

8-15

White liqueur wine

I

9-17

Red liqueur wine

J

10-13

Red liqueur wine

The analyses were carried out simultaneously by all participating laboratories between 16 and 20 July 2018. Samples were kept in refrigerated cabinets by all laboratories between the date of reception and the date of analysis, according to the protocols sent.

The following laboratories provided their results:

Laboratory

City

Country

Estación de Viticultura e Enoloxía de Galicia

Leiro (Ourense)

Spain

Laboratorio arbitral agroalimentario

Madrid

Spain

ASAE

Lisbon

Portugal

SCL Montpellier

Montpellier Cdex 5

France

HBLA und BA für Wein- und Obstbau

Klosterneuburg

Austria

Laboratorio de Salud Pública

Madrid

Spain

Laboratorio Agroambiental de Zaragoza

Zaragoza

Spain

Laboratoire SCL Bordeaux

Pessac Cedex - CS 98080

France

Unione Italiana Vini Servizi

Verona

Italy

Laboratorio Agroalimentario de Valencia

Burjassot (Valencia)

Spain

Agroscope

Nyon

Switzerland

Laboratoires Dubernet

Montredon des Corbières

France

Laboratoire Dioenos Rhône

Orange

France

Laboratoire Natoli

Saint Clément de Rivière

France

NB: The order of laboratories in the table does not correspond with the order in the following tables, in order to preserve the anonymity of results.

  1. Free sulphur dioxide

 

4.1.  Free SO2 data

Free SO2 (mg/L)

A

B

C

D

E

F

G

H

I

J

Sample

1

14

2

16

3

19

4

12

5

20

6

18

7

11

8

15

9

17

10

13

Labo 3

31

36

18

18

21

23

20

18

6

6

20

17

5

6

Labo 5

37

35

21

24

24

25

20

20

8

7

20

20

3

4

Labo 6

4

1

38

33

21

20

20

26

19

20

7

6

21

19

7

8

1

3

1

1

Labo 7

1

1

37

40

20

22

24

26

20

22

9

8

20

23

8

8

2

1

1

1

Labo 8

31

32

18

19

23

22

22

20

6

7

19

20

5

3

1

1

Labo 9

35

34

23

19

25

24

21

24

17

17

Labo 10

2

1

35

34

20

21

24

24

22

21

9

8

21

20

7

7

2

2

1

1

Labo 11

0

0

33

30

17

11

22

16

16

21

6

4

15

19

6

3

1

1

0

0

Labo 15

15

19

15

13

18

20

8

16

6

5

8

15

5

5

Labo 17

0

0

37

38

24

26

28

28

26

23

8

8

24

22

7

7

1

2

0

0

Labo 18

0

4

33

31

21

11

23

27

15

19

6

4

9

20

3

4

1

1

0

0

Labo 20

0

0

32

32

20

19

21

21

29

21

8

8

20

18

12

4

1

1

0

0

Labo 21

2

1

33

38

19

15

25

22

19

21

6

6

19

20

8

7

2

1

0

0

Results left blank were rendered non-quantifiable (< limit of quantification).

Result removed by the COCHRAN test at 5%

Result removed by the GRUBBS test at 5%

4.2.  Free SO2 results

Free SO2 (mg/L)

A

B

C

D

E

F

G

H

I

J

No. of laboratories selected

7

9

11

10

10

12

11

11

9

8

No. of repetitions

2

2

2

2

2

2

2

2

2

2

Min.

0

31.5

14

19

17

5

17

3.5

1

0

Max.

2.5

38.5

25

28

24.5

8.5

23

8

2

1

Mean

0.9

34.2

19.8

23.4

20.6

6.8

19.6

5.7

1.4

0.4

Standard deviation

0.98

2.67

2.91

2.46

2.04

1.31

1.77

1.72

0.42

0.52

Repeatability variance

0.79

1.67

2.59

1.20

2.60

0.58

2.23

0.82

0.39

0.00

Inter-laboratory standard deviation

0.98

2.67

2.91

2.46

2.04

1.31

1.77

1.72

0.42

0.52

Reproducibility variance

1.35

7.97

9.76

6.64

5.46

2.00

4.25

3.38

0.37

0.27

Repeatability standard deviation

0.89

1.29

1.61

1.10

1.61

0.76

1.49

0.90

0.62

0.00

r limit

2.48

3.61

4.51

3.07

4.51

2.14

4.18

2.53

1.75

0.00

Repeatability %CV (k=2)

191

8

16

9

16

23

15

32

90

0

Reproducibility standard deviation

1.16

2.82

3.12

2.58

2.34

1.41

2.06

1.84

0.61

0.52

R limit

3.25

7.90

8.75

7.22

6.54

3.96

5.78

5.15

1.70

1.45

Reproducibility %CV (k=2)

250

16

32

22

23

42

21

64

87

276

Horwitz PRSDR (%)

16.18

9.40

10.21

9.95

10.15

12.00

10.22

12.30

15.23

18.55

Horwitz sR

0.15

3.22

2.02

2.33

2.09

0.81

2.00

0.70

0.21

0.07

Horwitz R

0.42

9.10

5.71

6.59

5.91

2.29

5.67

1.99

0.60

0.20

Horwitz Ratio

7.64

0.87

1.53

1.10

1.11

1.73

1.02

2.58

2.84

7.37

Figure 1: Modelling of the repeatability coefficient of variation, %CV(r) (k=2), as a function of the concentration, C:

Figure 2: Modelling of the inter-laboratory reproducibility coefficient of variation, %CV(R) (k=2), as a function of concentration, C:

  1. Total sulphur dioxide

5.1.  Total SO2 data

Total SO2 (mg/L)

A

B

C

D

E

F

G

H

I

J

Sample

1

14

2

16

3

19

4

12

5

20

6

18

7

11

8

15

9

17

10

13

Labo 3

128

127

72

73

128

131

61

59

28

28

57

56

102

102

47

45

Labo 5

122

121

68

71

112

114

42

53

22

22

51

42

102

101

35

34

Labo 6

1

128

131

72

72

126

131

53

54

22

20

42

49

98

99

31

34

3

1

Labo 7

3

3

131

131

70

74

130

131

54

59

26

23

46

48

106

101

37

40

1

1

Labo 8

2

1

125

127

72

72

129

128

58

57

22

23

46

45

97

99

42

39

1

1

Labo 9

120

128

77

75

132

108

71

59

21

25

44

47

110

99

38

48

Labo 10

2

2

130

130

74

76

130

130

61

61

28

32

55

56

103

104

43

44

3

4

Labo 11

4

3

119

125

71

74

118

118

39

40

18

21

45

41

89

94

26

38

2

2

Labo 14

3

3

129

128

72

72

127

129

58

58

32

29

50

49

102

101

42

41

3

4

Labo 15

134

136

76

78

134

136

60

58

39

27

52

61

110

106

51

50

Labo 17

3

3

134

132

82

76

136

133

59

50

24

23

46

44

107

105

35

38

0

0

Labo 18

5

3

130

129

78

73

133

133

62

59

29

32

58

52

105

105

50

48

2

2

Labo 20

1

1

128

131

72

74

130

130

58

56

26

28

48

45

98

93

41

43

0

0

Labo 21

0

124

125

69

72

124

126

45

51

19

20

42

42

97

97

35

34

0

1

Results left blank were rendered non-quantifiable (< limit of quantification).

Result removed by the COCHRAN test at 5%

Result removed by the GRUBBS test at 5%

5.2.  Total SO2 results

Total SO2 (mg/L)

A

B

C

D

E

F

G

H

I

J

No. of laboratories selected

7

12

13

13

8

13

10

13

12

9

No. of repetitions

2

2

2

2

2

2

2

2

2

2

Min.

1

121.5

69.5

113

53.5

19.5

42

91.5

32.5

0

Max.

3.5

135

77

135

61

30.5

56.5

108

50.5

3.5

Mean

2.4

128.8

73.0

128.0

58.3

24.7

47.6

100.9

40.8

1.5

Standard deviation

0.93

3.63

2.20

6.24

2.42

4.04

4.89

4.61

5.80

1.35

Repeatability variance

0.14

1.46

3.27

2.35

1.44

3.04

2.30

3.96

2.21

0.17

Inter-laboratory standard deviation

0.93

3.63

2.20

6.24

2.42

4.04

4.89

4.61

5.80

1.35

Reproducibility variance

0.94

13.93

6.49

40.11

6.57

17.84

25.03

23.28

34.72

1.90

Repeatability standard deviation

0.38

1.21

1.81

1.53

1.20

1.74

1.52

1.99

1.49

0.41

r limit

1.1

3.4

5.1

4.3

3.4

4.9

4.2

5.6

4.2

1.1

Repeatability %CV (k=2)

31

2

5

2

4

14

6

4

7

54

Reproducibility standard deviation

0.97

3.73

2.55

6.33

2.56

4.22

5.00

4.82

5.89

1.38

R limit

2.7

10.5

7.1

17.7

7.2

11.8

14.0

13.5

16.5

3.9

Reproducibility %CV (k=2)

80

6

7

10

9

34

21

10

29

184

Horwitz PRSDR (%)

14.00

7.70

8.39

7.71

8.68

9.87

8.95

7.99

9.16

15.05

Horwitz sR

0.34

9.92

6.13

9.86

5.06

2.44

4.26

8.06

3.73

0.23

Horwitz R

0.96

28.05

17.33

27.90

14.31

6.91

12.04

22.80

10.56

0.64

Horwitz Ratio

2.82

0.37

0.41

0.64

0.50

1.71

1.16

0.59

1.56

6.04

Figure 3: Modelling of the repeatability coefficient of variation, %CV(r) (k=2), as a function of concentration, C:

Figure 4: Modelling of the inter-laboratory reproducibility coefficient of variation, %CVR (k=2), as a function of concentration, C: